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Abstract
We compute the correlation functions of the three-state superintegrable chiral
Potts spin chain for chains of length 3, 4, 5. From these results we present
conjectures for the form of the nearest-neighbor correlation function.

PACS numbers: 05.50.+q, 64.60.De, 75.10.Hk, 75.10.Jm

1. Introduction

The free energy of the Ising model was first solved by Onsager [1] in 1944 who invented
a method of solution based on what is now known as ‘Onsager’s algebra’. This algebra is
generated from operators A0 and A1 which form a Hamiltonian

H = A0 + λA1, (1)

where

[A0, [A0, [A0, A1]]] = const[A0, A1] (2)

and from A0 and A1 the full algebra is generated as [2]

[Aj ,Ak] = 4Gj−k

[Gm,Al] = 2Al+m − 2Al−m (3)

[Gj,Gk] = 0.

For 41 years, the Ising model was the only known model which satisfied this algebra but in
1985 von Gehlen and Rittenberg [3] made the remarkable discovery that the Hamiltonian (1)
with

A0 = −
N∑

j=1

N−1∑
r=1

eiπ(2r−N)/(2N)

sin πr/N
Zr

jZ
†r
j+1 (4)
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A1 = −
N∑

j=1

N−1∑
r=1

eiπ(2r−N)/(2N)

sin πr/N
Xr

j , (5)

where Zj and Xj are direct product matrices

Zj = I ⊗ · · · ⊗ Z ⊗ · · · ⊗ I (6)

Xj = I ⊗ · · · ⊗ X ⊗ · · · ⊗ I, (7)

where I is the N × N identity matrix, the N × N matrices Z and X are in the j th position in
the product and have the matrix elements

Zj,k = ωjδj,k (8)

Xj,k = δj,k+1 (9)

with

ω = e2π i/N (10)

also being a representation of Onsager’s algebra (3). The Hamiltonian (1) with A0 and A1

given by (4) and (5) is called the N state superintegrable chiral Potts spin chain. When N = 2
the Hamiltonian of the superintegrable chiral Potts spin chain reduces to the Hamiltonian
studied by Onsager [1].

It was discovered in [4] by means of explicit computations on chains of small length that
the eigenvalues of the superintegrable chiral Potts Hamiltonian are all of the form

E = A + Bλ + N

m∑
j=1

±(1 + λ2 + ajλ)1/2. (11)

This form was proven to follow directly from Onsager’s algebra by [5–7]. The parameters
aj , A,B in (11) have been computed by the method of functional equations [8–11] where it is
found, for λ suitably less than unity, that in the thermodynamic limit the ground-state energy
per site is

e0(λ) = lim
N→∞

1

N
E0(λ;N ) = −(1 + λ)

N−1∑
l=1

F

(
−1

2
,

l

N
; 1; 4λ

(1 + λ)2

)
, (12)

where F(a, b; c; z) is the hypergeometric function.
In this paper, we extend these finite chain computations from the eigenvalues of the

Hamiltonian to the correlation functions in the ground state
〈
Zr

0Z
†r
R

〉
.

There are several constraints that these correlations must satisfy. One such constraint is
the obvious requirement that〈

Z
(N−r)
0 Z

†(N−r)

1

〉 = 〈
Zr

0Z
†r
1

〉∗
. (13)

Furthermore in thermodynamic limit N → ∞, the correlation is related to the order parameter
by

M2
r = lim

R→∞
〈
Zr

0Z
†r
R

〉
. (14)

For N = 2, the order parameter is the spontaneous magnetization of the Ising model

M = (1 − λ2)1/8 (15)

which was reported by Onsager [12] in 1948 and proven by Yang [13] in 1952. For the N state
superintegrable chiral Potts spin chain, it was conjectured by Albertini et al [4] in 1988 and
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proven by Baxter [14] in 2005 that

Mr = (1 − λ2)r(N−r)/2N2
. (16)

The order parameter of the Ising model (15) may be computed [15] by the use of Szegő’s
theorem applied to the representation of the correlation function

〈
Z0Z

†
R

〉
as a determinant [16]

which is derived using free fermion methods first invented by Kaufman[17]. However, the
chiral Potts order parameter (16) is computed by Baxter [14] by functional equation methods
which do not extend to a computation of the correlation functions

〈
Zr

0Z
†r
R

〉
.

Because the superintegrable chiral Potts model is a generalization of the Ising model with
the same underlying Onsager algebra, there must be a structure of the Ising correlations which
generalizes to superintegrable chiral Potts. However, because the Ising correlations have been
computed by means of free Fermi methods and not by use of Onsager’s algebra, this structure
remains unknown.

Recently Au-Yang and Perk [18–21] and Nishino and Deguchi [22] have initiated the
study of the eigenvectors of the superintegrable chiral Potts spin chain by the use of the
Onsager algebra. These important studies are the necessary foundation for the computation
of the correlation functions from the point of view of the Onsager algebra.

The purpose of this paper is to provide insight into the correlation functions of the
superintegrable chiral Potts spin chain by explicitly calculating the correlations

〈
Zr

0Z
†r
R

〉
for

the three state case N = 3 for chains of finite length N = 3, 4, 5 which extends to correlation
functions, the study of [4] of the ground-state energy E0(λ;N ). For any value ofN , the nearest-
neighbor correlations satisfy a sum rule coming from the ground-state energy E0(λ;N ). This
sum rule is presented and discussed in section 2. In section 3 we present the results of our
finite chain computations and we conclude in section 4 with a discussion of the implications
which the results for finite chains have for the correlations in the thermodynamic limit.

2. Sum rule

There is an elementary result known as Feynman’s theorem that for any Hamiltonian which
depends on a parameter λ that〈

∂

∂λ
H(λ)

〉
= ∂

∂λ
E0(λ), (17)

where 〈O〉 denotes the expectation value of the operator O in the ground state and E0(λ)

denotes the ground-state energy as a function of λ. Therefore, it follows from (17) that for the
superintegrable chiral Potts Hamiltonian (1), (4), (5), the expectation

〈
Xr

0

〉
satisfies the sum

rule

−N
N−1∑
r=1

eiπ(2r−N)/(2N)

sin πr/N

〈
Xr

0

〉 = ∂E0(λ;N )

∂λ

= B − N

m∑
j=1

λ + aj/2

(1 + λ2 + ajλ)1/2
(18)

and
〈
Zr

0Z
†r
1

〉
satisfies

−N
N−1∑
r=1

eiπ(2r−N)/(2N)

sin πr/N

〈
Zr

0Z
†r
1

〉 = E0(λ;N ) − λ
∂E0(λ;N )

∂λ

= A − N

m∑
j=1

1 + λaj/2

(1 + λ2 + ajλ)1/2
. (19)
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3. Correlations for N = 3 and N = 3, 4, 5

We will explicitly consider the three state case N = 3, where the Hamiltonian (1) is explicitly
written as

H = −
N∑

j=1

((
1 − i√

3

)(
ZjZ

†
j+1 + λXj

)
+

(
1 +

i√
3

)(
Z2

jZ
†2
j+1 + λX2

j

))
(20)

and using (13), the sum rule (19) is(
1 − i√

3

)〈
Z0Z

†
1

〉
+

(
1 +

i√
3

)〈
Z0Z

†
1

〉∗ = − A

N
+

3

N

m∑
j=1

1 + ajλ/2

(λ2 + 1 + ajλ)1/2
. (21)

It is known from [10] that for small λ, the ground state is in the sector P = 0 and Q = 0,
where P is the momentum of the state and

ei2πQ/3 =
N∏

k=1

Xk. (22)

For the ground state,

A = B = −Pa, for N ≡ −Pa mod 3 Pa = 0, 1, 2 (23)

and

aj = 2
(
1 + t3

j

)
1 − t3

j

(24)

and tj are the roots of the polynomial equation

0 = t−Pa {(t − 1)N (tω2 − 1)Nω−Pa

+ (tω − 1)N (tω2 − 1)N + (t − 1)N (tω − 1)NωPa } (25)

with ω = e2π i/3. From computations of Galois groups done on Maple, we see for N � 12
that (25) can be explicitly solved in terms of radicals only for N = 3, 4, 5, 6, 9, 12.

The eigenspace for the states with P = Q = 0 are of dimension 5 for N = 3, dimension
8 for N = 4 and dimension 17 for N = 5. The correlations may now be computed in principle
by computing the normalized eigenvectors in the subspace P = Q = 0 and then explicitly
computing the matrix elements of Z0Z

†
R . In practice, the algebra is too formidable to do

by hand and the computation must be computerized. When this is done and expressions are
simplified by removing common factors, the results are as follows.

3.1. N = 3

From (24) and (25), we find

9a2 − 20 = 0 (26)

and thus

a1 = −2
√

5

3
, a2 = 2

√
5

3
. (27)

Thus, defining

xj = (λ2 + 1 + ajλ)1/2, (28)

we find
〈
Z0Z

†
1

〉 = (1 − i
√

3)

(
3

40
− 3λ2 − 7

40x1x2

)
+

3

8

(
1 +

i√
3

)(
1 + a1λ/2

x1
+

1 + a2λ/2

x2

)
. (29)

4
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From (29), we find(
1 − i√

3

)
〈Z0Z

†〉 = −i
4√
3

(
3

40
− 3λ2 − 7

40x1x2

)
+

1

2

(
1 + a1λ/2

x1
+

1 + a2λ/2

x2

)
(30)

and hence the sum rule (19) is obviously satisfied. For λ → 0, (29) is expanded as

〈
Z0Z

†
1

〉 = 1 − 2

9
λ2 − 17 − i3

√
3

54
λ4 + O(λ6) (31)

and for λ → ±∞,

〈
Z0Z

†
1

〉 = 1

3

(
1 +

i√
3

)
|λ|−1 +

1

6
(1 − i

√
3)λ−2 + O(|λ|−3). (32)

3.2. N = 4

For N = 4,

27a2 + 36a − 20 = 0 (33)

and thus there are again two roots aj which are now given by

a1 = −2

3
+

4

9

√
6, a2 = −2

3
− 4

9

√
6. (34)

We define xj as before (28) and obtain for 〈Z0Z
†
1〉 the result

〈
Z0Z

†
1

〉 = 1

4
− (1 − i

√
3)

2λ − 3

40x1x2

+ (1 + a1λ/2)
3

320x1
[36 −

√
6 + i

√
2(3 + 2

√
6)] (35)

+ (1 + a2λ/2)
3

320x2

[
36 +

√
6 − i

√
2(3 − 2

√
6)

]

= 3

16

(
1 +

i√
3

)
+

1

16
(1 − i

√
3) − (1 − i

√
3)

2λ − 3

40x1x2

+ (1 + a1λ/2)
3

320x1

[
30

(
1 +

i√
3

)
+ (6 −

√
6)(1 − i

√
3)

]

+ (1 + a2λ/2)
3

320x2

[
30

(
1 +

i√
3

)
+ (6 +

√
6)(1 − i

√
3)

]
. (36)

We note that the coefficients of 1 + i3−1/2 and 1 − i31/2 are both real, that(
1 − i√

3

)〈
Z0Z

†
1

〉 = 1

4
− i

1

4
√

3
+ i

1√
3

2λ − 3

10x1x2

+ (1 + a1λ/2)
3

320x1

[
40 − i(6 −

√
6)

4√
3

]

+ (1 + a2λ/2)
3

320x2

[
40 − i(6 +

√
6)

4√
3

]
(37)

and thus the sum rule (19) is satisfied. For λ → 0, (37) reduces to

〈
Z0Z

†
1

〉 = 1 − 2

9
λ2 +

1 + i
√

3

162
λ4 +

8
√

3i

729
λ5 + O(λ6) (38)

5
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and for λ → ±∞
〈
Z0Z

†
1

〉 = 1

3

(
1 +

i√
3

)
|λ|−1 +

1

18

(
1 − i

√
3

)
λ−2 +

4

81
(1 − 4i√

3
)|λ|−3 + O(λ−4). (39)

We also compute
〈
Z0Z

†
2

〉
and find

〈
Z0Z

†
2

〉 = 1

4
− 2λ − 3

10x1x2
+ (1 + a1λ/2)

3(6 − √
6)

80x1
+ (1 + a2λ/2)

3(6 +
√

6)

80x2
. (40)

For small λ, this reduces to

〈
Z0Z

†
2

〉 = 1 − 2

9
λ2 − 1

81
λ4 + O(λ5) (41)

and for λ → ±∞
〈
Z0Z

†
2

〉 = 2

9
λ−2 +

20

81
|λ|−3 +

84

729
λ−4 + O(λ−5). (42)

3.3. N = 5

For N = 5, there are three roots aj that satisfy

81a3 + 54a2 − 228a − 88 = 0 (43)

which are given by

a1 = −2

9
− 2

9
(W+ + W−) (44)

a2 = −2

9
− 2

9
(ω2W+ + ωW−) (45)

a3 = −2

9
− 2

9
(ωW+ + ω2W−), (46)

where

W± = 1

17
(7 ± i

√
19)

(
5

2

)1/3

w± (47)

with

w± = (311 ± i9
√

19)1/3. (48)

We define xj as before (28) and obtain for
〈
Z0Z

†
1

〉
the result

〈
Z0Z

†
1

〉 = 3

40

(
1 +

i√
3

)
+

37

40 · 19
(1 − i

√
3) +

9

40

(
1 +

i√
3

) 3∑
j=1

1 + ajλ/2

xj

+
1

23 · 52 · 19
(1 − i

√
3)

3∑
j=1

91 + bj − 27aj/2 − λ(67/3 + 7bj/3 − 7 · 9aj/2)

xj

+
1

23 · 52 · 19
(1 − i

√
3)

∑
1�j<k�3

Pj,k

xjxk

, (49)
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where

b1 = 1 +

(
5

2

)1/3

(w+ + w−)

b2 = 1 +

(
5

2

)1/3

(ω2w+ + ωw−) (50)

b3 = 1 +

(
5

2

)1/3

(ωw+ + ω2w−),

and

Pj,k = 164 +
81

2
(aj + ak) + 7(bj + bk)

+
λ

3
[−56 +

49 · 9

2
(aj + ak) + 2(bj + bk)]

+

(
λ

3

)2

[−504 − 13 · 81(aj + ak) − 9 · 13(bj + bk)]. (51)

It is easy to see that (49) satisfies the sum rule (19). When λ → 0 (49) reduces to

〈
Z0Z

†
1

〉 = 1 − 2

9
λ2 +

1

162
(−9 + i

√
3)λ4 +

56

729
λ5 + O(λ6) (52)

and for λ → ±∞,

〈
Z0Z

†
1

〉 = 1

3

(
1 +

i√
3

)
|λ|−1 +

1

18
(1 − i

√
3)λ−2 +

4

81

(
1 +

i√
3

)
|λ|−3 + O(λ−4). (53)

4. Discussion

From the results (29), (36) and (49) for N = 3, we conjecture for arbitrary N that
〈
Z0Z

†
1

〉
has

the form
〈
Z0Z

†
1

〉 = P0 +
∑

j

Pj (λ)

xj

+ (1 − i
√

3)
∑
j<k

Pj,k(λ)

xjxk

, (54)

where P0 is a constant, Pj (λ) is a polynomial linear in λ and Pj,k(λ) is a polynomial at most
quadratic in λ with real coefficients. In the limit N → ∞, the correlation

〈
Z0Z

†
1

〉
will be a

double integral. For N = 2, this correlation is a single integral and thus we expect that for
general N, the correlation

〈
Zr

0Z
r†
1

〉
will be an (N − 1)-fold integral.

We expect for arbitrary N that
〈
Zr

0Z
r†
R

〉
will be a (N − 1)R fold integral but the first

evidence for this for N = 3 can only come N = 6.
We also conjecture from the result (41) for

〈
Z0Z

†
2

〉
and N = 4 that for all even N the

correlation for N = 3
〈
Z0Z

†
N /2

〉
is real. In the limit N → ∞, we must have

lim
N→∞

〈
Zr

0Z
†r
N /2

〉 = (1 − λ2)r(N−r)/N2
. (55)
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